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Abstract

Video frame prediction is crucial in the field of com-
puter vision, with applications such as autonomous ve-
hicles, robotics, and video refinement. Existing research
approaches struggle with maintaining longer-length video
predictions considering motions which ultimately result in
pixel hallucinations or blurry video frame. This is often due
to combined errors from improper motion modeling. In this
paper, we present a novel framework for predicting video
frames that leverages kinematic motion constraints and op-
tical flow to incorporate motion adherence. The framework
provides reliable predictions even in intricate, non-linear
motion situations. Various tests on benchmark datasets
show notable gains in visual consistency and prediction ac-
curacy with addition of kinematic constraints when com-
pared with the baseline models. The proposed framework
bridges the gap in between the physics informed prediction
the learned representations

1. Introduction
Video frame prediction has an important role to predict
the dynamically changing systems such as Autonomous
vehicles for safety enhancement, which is addressed
by some advanced machine learning algorithms such
as RNNs, GANs, Diffusion models, etc. Although the
accuracy to predict the video frames has improved, they
suffer from pixel hallucinations and accurate long-term
video predictions. These are majorly since the predictions
do not leverage the kinematics information that is extant in
the real-world such as vehicle and pedestrian motion.

Main contributions: We build upon the ideas from Retro-
spective Cycle GAN (RCGAN) [3]. They established great
performance compared to the SOTA with their forward and
backward temporal consistency idea for training the gener-
ator.
1. Optical Flow-based constraints: Preserves the spatio-

temporal motion consistency that utilizes pixel-wise fine

grain tracking. We used pretrained model RAFT for pre-
dicting the optical flow.

2. Kinematic Velocity and Acceleration based constraints:
Embedded kinematics equation to restrict the pixel wise
motion in video frame prediction via velocity and ac-
celeration. Executed this via additional loss term in the
generator loss function.
By evaluating the two approaches to the baseline RC-

GAN was outperformed by Optical Flow based RCGAN.
Moreover, Kinematic-RCGAN performed superior than all
other approaches with better quantitative and qualitative re-
sults. More detailed results and discussion can be found at
project website: conditional rcgan

2. Relevant Work
Vehicle and pedestrian motions are guided by the physical
laws and to accurately predict the videos, its important to
include physical a biological property in videos which is
in general challenging. This research work introduces a
new architecture based on the encoder decoder with con-
volutional LSTM to predict the long-term video sequence
aka PhyLoNet [7] which encompasses the physics laws to
represent the realistic motion behaviors. The paper is an ad-
dition to the previous research PhyDNet where in PhyLoNet
now, has network architectural differences with an encoder
decoder structure with a new concept of a relative flow loss.
Where PhyLoNet claims to have better results in long term
video predictions with a small input video sequence.
Another work proposes an end-to-end unsupervised learn-
ing video prediction network model called as Generative
Differential-Assisted Discriminative Network, GDDNet.
The motion-based information in the video is learned
through the attention mechanisms and the variations in the
videos are captured by the difference generation method.
This research mainly focuses on enhancing the detailed rep-
resentation in the long-term video prediction learned from
the short-term motion cells. Although this method shows
efficiently predicts the video sequence, there is room for
improvement in blurriness of the frames.
In [4] a novel Dual GAN based architecture is used to pre-
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dict the next frames reducing the blurriness with dual objec-
tive by pixel wise flow refinement and frame-based refine-
ment. The architecture encompasses of, a Probabilistic En-
coder, two GANs one as a Flow Generator GAN followed
by a Frame wrapping layer and another as a Frame Genera-
tor GAN followed by a Flow Estimator, and two adversarial
discriminators, i.e. a frame Discriminator and a Flow Dis-
criminator. The dual nature of predicting the flow and fake
enhances the network’s ability to reduce the pixel hallucina-
tions and blurriness. Similarly, [2] proposes dual objective
based on the encoder decoder framework that handles the
dynamics as well as enhances the spatial correlations. How-
ever, the both of these research works struggles predicting
the large video sequences with details where [2] addition-
ally requires heavy tuning of of motion cell hyper param-
eters. PredNet [5] on the other hand is inspired by predic-
tive coding theories from neuroscience. It is designed to
learn temporal structure in video frames, enabling the pre-
diction of future frames by decoupling the representation of
each frame into prediction and error layers. Each layer in
the network makes localized predictions, passing forward
only deviations. The research showed better generalization
for learned representations like steering angle prediction.
But, their predictions under-perform when in complex and
rapidly changing scenes.
The most related work on which our work builds is [3] Ret-
rospective Cycle GAN (RCGAN), of which network archi-
tecture aims to predict the accurate temporal sequences of
the video frames with a GAN architecture. A single gen-
erator predicts the sequences in forward and reverse cy-
cles allowing the generator to double verify its consistency.
The architecture encompasses two discriminators, one as a
frame discriminator that differentiates in between real and
fake individual frames and another as a sequence discrim-
inator that determines real and fake sequences of video
frames generated. The generator loss function consists of
image reconstruction loss, Laplacian of gaussian to prevent
the edges in the image, and adversarial loss. This allows the
entire model architecture to predict very long sequences of
the video accurately. Additionally, we draw our inspiration
from the optical flow model RAFT [6] that estimates deep
optical flow in the video frame sequences.

3. Approach

We develop 3 models over the baseline RCGAN architec-
ture to improve blurring in the later frames. In an attempt
to condition the GAN on physics directly or indirectly we
employ two methods. In the first method, we compute op-
tical flow for the frame sequences with RAFT [6] which is
shown to perform well on KITTI dataset [1] that we use
here. The difference in the optical flow is used to condition
the generations. The loss function is as in (1).

l1 = Limage +λ1 ·LLoG +λ2 ·LAdv
frame +λ3 ·LAdv

sequence

+ λ4 · Lflow (1)

Where, Limage is the image reconstruction loss, ·LLoG

is the Laplacian of Gaussian loss that helps preserve the
edge details and the rest are adversarial losses with respec-
tive weights λ1 to be tuned. The condition added here is
·Lflow which is a optical flow loss constraint. In the second
approach, velocity and acceleration for each pixel is com-
puted during training and is compared to the ground truth
sequence. The velocity and acceleration losses for each
pixel are given as in 2. The resulting loss function is given
in (4).

Lvel = ∥vpredicted − vreal∥ (2)
Lacc = ∥apredicted − areal∥ (3)

l2 = Limage +λ1 ·LLoG +λ2 ·LAdv
frame +λ3 ·LAdv

sequence

+ λ5 · Lvel + λ6 · Lacc (4)

And in the third approach, we include both kinematics
and flow loss in the loss function (5).

l3 = Limage +λ1 ·LLoG +λ2 ·LAdv
frame +λ3 ·LAdv

sequence

+ λ5 · Lvel + λ6 · Lacc + λ4 · Lflow (5)

Where, ·Lvel and ·Lacc are kinematic losses added to as
a constraint. With the network architecture from RCGAN,
we predict the 5 frame output video frames from 5 frame
input sequences to the model.

4. Experimental Results and Discussion
We train and evaluate over five input and predicted output
sequences across baseline RCGAN model and 3 other novel
conditioned RCGAN models. To run the simulation on lim-
ited memory access we reduce original sequence prediction
to five consecutive frames. Additionally, we Cropped and
downsized images to 128x128 from KITTI Raw dataset [1]
for city driving with normalization that leads to improved
learning performance. Small image sequences (18) and
batch sizes were used to train the model to accommodate
16GB memory of V100 GPU.
We evaluated video frame predictions for 4 models:
• Baseline Retrospective Cycle GAN-RCGAN
• Approach 1: Kinematics Conditioned RCGAN
• Approach 2: Optical Flow Conditioned RCGAN



• Approach 3: Optical Flow + Kinematics Conditioned RC-
GAN
For the evaluation purposes across all the qualitative re-

sults aare show in the format of Fig. 1 (baseline RCGAN
model evaluation), where the upper row of images denotes
predicted 5 frame sequences and the second row of images
denotes corresponding ground truth video frames. As ob-
served, the transition from 4th to 5th frame prediction by
the baseline model is blurred marginally high.

Figure 1. Baseline model at 10 epochs

Epoch No. Model PSNR SSIM MSE

10 Baseline 22.09 0.719 6.29
Approach-1 22.95 0.763 5.26
Approach-2 23.22 0.764 4.83
Approach-3 22.66 0.737 5.46

100 Baseline 23.76 0.790 4.9
Approach-1 26.20 0.850 2.48
Approach-2 25.43 0.839 3.10
Approach-3 25.93 0.838 2.647

Table 1. Quantitative: Baseline, Flow Conditioned RCGAN, and
Kinematics RCGAN model at 10 and 100 epochs

From the Fig. 2, at epoch 10 we can already observe the
bluriness in the conditioned GAN approaches is lesser than
the Baseline RCGAN model. Where, the Kinematic con-
strained RCGAN predictions are visibly similar to the Flow
based RCGAN. All of the models struggle to predict accu-
rately transitioning from 4th to 5th image prediction with
blurriness added.
Similarly when we look at Table 1, For epoch 10, all three
conditioned RCGAN models outperforms the baseline RC-
GAN (PSNR 22.09, SSIM 0.719, MSE 6.29) suggesting
its effectiveness. At epoch 10, the performance of Kine-
matic RCGAN (PSNR 23.22, SSIM 0.764, MSE 4.83) and
Flow RCGAN (PSNR 22.95, SSIM 0.763, MSE 5.26) per-
forms very similar with kinematic RCGAN having a small
edge over Flow RCGAN. When both of the Kinematic and
Flow RCGAN models are combined in Approach 3, the per-
formance decreases suggesting the conditions are working

against each other when combined or more training data is
required.
This also suggests that more number of epochs are needed
to train the models to better the performance. As ob-
served from training after 100 epochs, Conditional RC-
GANs showed less blurry video frames Fig. 3. Addition-
ally, we also evaluated the model combing the optical flow
and kinematics RCGAN and found out that the qualitative
and quantitative performance was not better than the Kine-
matic conditioned RCGAN (PSNR 26.20,SSIM 0.85, MSE
2.48).
Detailed observation from Fig. 4 suggests marginal im-
provement in the details from Kinematic conditioning. The
road markings and vehicle edges are identified clearly even
in the last frame of prediction sequence suggests that mo-
tion constraints enhances the accuracy.

5. Conclusion and Future Work
We developed a conditional GAN model to restrict pixel
movements to realistic ones using optical flow or kinematic
velocity constraints. This helps reducing blurring over the
baseline model. One main limitation is evaluating model
over long term prediction. In future, we intend to apply
constraints to the objects tracked to make the predictions
more accurate, especially in long term sequence
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Figure 2. Qualitative: Baseline, Flow Conditioned RCGAN, and Kinematics RCGAN model at 10 epochs

Figure 3. Qualitative: Baseline, Flow Conditioned RCGAN, and Kinematics RCGAN model at 100 epochs

Figure 4. Qualitative: Kinematics RCGAN model
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